8 research outputs found

    Energy-aware QoE and backhaul traffic optimization in green edge adaptive mobile video streaming

    Get PDF
    Collaborative caching and processing at the network edges through mobile edge computing (MEC) helps to improve the quality of experience (QoE) of mobile clients and alleviate significant traffic on backhaul network. Due to the challenges posed by current grid powered MEC systems, the integration of time-varying renewable energy into the MEC known as green MEC (GMEC) is a viable emerging solution. In this paper, we investigate the enabling of GMEC on joint optimization of QoE of the mobile clients and backhaul traffic in particularly dynamic adaptive video streaming over HTTP (DASH) scenarios. Due to intractability, we design a greedy-based algorithm with self-tuning parameterization mechanism to solve the formulated problem. Simulation results reveal that GMEC-enabled DASH system indeed helps not only to decrease grid power consumption but also significantly reduce backhaul traffic and improve average video bitrate of the clients. We also find out a threshold on the capacity of energy storage of edge servers after which the average video bitrate and backhaul traffic reaches a stable point. Our results can be used as some guidelines for mobile network operators (MNOs) to judge the effectiveness of GMEC for adaptive video streaming in next generation of mobile networks

    Edge computing assisted adaptive mobile video streaming

    Get PDF
    Nearly all bitrate adaptive video content delivered today is streamed using protocols that run a purely client based adaptation logic. The resulting lack of coordination may lead to suboptimal user experience and resource utilization. As a response, approaches that include the network and servers in the adaptation process are emerging. In this article, we present an optimized solution for network assisted adaptation specifically targeted to mobile streaming in multi-access edge computing (MEC) environments. Due to NP-Hardness of the problem, we have designed a heuristic-based algorithm with minimum need for parameter tuning and having relatively low complexity. We then study the performance of this solution against two popular client-based solutions, namely Buffer-Based Adaptation (BBA) and Rate-Based Adaptation (RBA), as well as to another network assisted solution. Our objective is two fold: First, we want to demonstrate the efficiency of our solution and second to quantify the benefits of network-assisted adaptation over the client-based approaches in mobile edge computing scenarios. The results from our simulations reveal that the network assisted adaptation clearly outperforms the purely client-based DASH heuristics in some of the metrics, not all of them, particularly, in situations when the achievable throughput is moderately high or the link quality of the mobile clients does not differ from each other substantially

    Towards Disruption Tolerant ICN

    Full text link
    Information-Centric Networking (ICN) is a promi- nent topic in current networking research. ICN design signifi- cantly considers the increased demand of scalable and efficient content distribution for Future Internet. However, intermittently connected mobile environments or disruptive networks present a significant challenge to ICN deployment. In this context, delay tolerant networking (DTN) architecture is an initiative that effec- tively deals with network disruptions. Among all ICN proposals, Content Centric Networking (CCN) is gaining more and more interest for its architectural design, but still has the limitation in highly disruptive environment. In this paper, we design a protocol stack referred as CCNDTN which integrates DTN architecture in the native CCN to deal with network disruption. We also present the implementation details of the proposed CCNDTN. We extend CCN routing strategies by integrating Bundle protocol of DTN architecture. The integration of CCN and DTN enriches the connectivity options of CCN architecture in fragmented networks. Furthermore, CCNDTN can be beneficial through the simultaneous use of all available connectivities and opportunistic networking of DTN for the dissemination of larger data items. This paper also highlights the potential use cases of CCNDTN architecture and crucial questions about integrating CCN and DTNComment: ISCC 201

    Mobile edge computing assisted green scheduling of on-move electric vehicles

    Get PDF
    Mobile edge computing (MEC) has been proposed as a promising solution, which enables the content processing at the edges of the network helping to significantly improve the quality of experience (QoE) of end users. In this article, we aim to utilize the MEC facilities integrated with time-varying renewable energy resources for charging/discharging scheduling known as green scheduling of on-move electric vehicles (EVs) in a geographical wide area comprising of multiple charging stations (CSs). In the proposed system, the charging/discharging demands and the contextual information of EVs are first transmitted to nearby edge servers. With instantaneous electricity load/pricing and the availability of renewable energy at nearby CSs collected by aggregators, a weighted social-welfare maximization problem is then solved at the edges using greedy-based algorithms to choose the best CS for the EV’s service. From the system point of view, our results reveal that compared to cloud-based scheme, the proposed MEC-assisted EVs scheduling system significantly improves the complexity burden, boosts the satisfaction (QoE) of EVs’ drivers by localizing the traffic at nearby CSs, and further helps to efficiently utilize the renewable energy across CSs. Furthermore, our greedy-based algorithm, which utilizes the internal updating heuristics, outperforms some baseline solutions in terms of social welfare and power grid ancillary services

    D2D-enabled collaborative edge caching and processing with adaptive mobile video streaming

    No full text
    Multi-access edge computing (MEC) enables placing video content at the edge of a mobile network with the aim of reducing data traffic in the backhaul network. Direct device-to-device (D2D) communication can further alleviate load from the backhaul network. Both MEC and D2D have already been examined by prior work, but their combination applied to adaptive video streaming have not yet been explored in detail. In this paper, we analyze how enabling D2D jointly with edge computing affects the quality of experience (QoE) of video streaming clients and contributes to reducing the backhaul traffic. To this end, we formulate the problem of jointly maximizing the QoE of the clients and minimizing the backhaul traffic and edge processing as an integer non-linear programming (INLP) optimization model and propose a low-complexity algorithm using self-parameterization technique to solve the problem. The main takeaway from simulation results is that enabling D2D with edge computing reduces the backhaul traffic by approximately 18% and edge processing by 30% on average while maintaining roughly the same average video bitrate per client compared to edge computing without D2D. Our results provide a guideline for system designers to judge the effectiveness of enabling D2D into MEC in the next generation of 5G mobile networks.Peer reviewe

    Virtual Machine Consolidation with Multiple Usage Prediction for Energy-Efficient Cloud Data Centers

    No full text
    Käsikirjoitus avataan, kun artikkeli julkaistuVirtual machine consolidation aims at reducing the number of active physical servers in a data center so as to decrease the total power consumption. In this context, most of the existing solutions rely on aggressive virtual machine migration, thus resulting in unnecessary overhead and energy wastage. Besides, virtual machine consolidation should take into account multiple resource types at the same time, since CPU is not the only critical resource in cloud data centers. In fact, also memory and network bandwidth can become a bottleneck, possibly causing violations in the service level agreement. This article presents a virtual machine consolidation algorithm with multiple usage prediction (VMCUP-M) to improve the energy efficiency of cloud data centers. In this context, multiple usage refers to both resource types and the horizon employed to predict future utilization. Our algorithm is executed during the virtual machine consolidation process to estimate the long-term utilization of multiple resource types based on the local history of the considered servers. The joint use of current and predicted resource utilization allows for a reliable characterization of overloaded and underloaded servers, thereby reducing both the load and the power consumption after consolidation. We evaluate our solution through simulations on both synthetic and real-world workloads. The obtained results show that consolidation with multiple usage prediction reduces the number of migrations and the power consumption of the servers while complying with the service level agreement.Peer reviewe
    corecore